GIRAFFE

From SAAO TOPS Wiki
Revision as of 23:50, 27 January 2015 by Hannah (Talk | contribs) (Observing Recipe)

Jump to: navigation, search

Brief description of GIRAFFE

The SAAO Grating Instrument for Radiation Analysis with a Fibre Fed Échelle - GIRAFFE - consists of two components:

(i) The head which is mounted at the Cassegrain focus to collect light from the star and direct it into the fibre;

(ii) The spectrograph, constructed on an optical bench in the Coude room, in which the light emerging from the fibre is dispersed and recorded by a CCD camera.

The CCD camera is controlled by a PC in the observing room. The software, called QUARTZ, has the task of setting the exposure time, reading and displaying the CCD image and also controlling various components on the GIRAFFE head, such as the arc lamp and flatfield lamps. At the end of the exposure the FITS file is transferred to the server and can be displayed and reduced via the thin client.

There are four PCs that the observer will use:

1. A Linux PC called giraffe running QUARTZ.

2. A thin client system for data storage ltsp.suth.saao.ac.za.

3. A laptop running a LabView program to display the APD counts, i.e. monitor the light intensity emerging from the fibre.

4. The Linux TCS PC for acquisition and autoguiding.

Data reduction Software for Giraffe

Starting QUARTZ

The technicians would have set up the PC running QUARTZ in diagnostic mode. You need to exit from this and start the software in your own directory.

  • Click Exit in the top right of the QUARTZ window, and answer No when it asks you to save a file.
  • In a terminal, navigate to /data/ccd, create your own subdirectory, change to that directory and run QUARTZ from there:

cd

mkdir xyz

cd xyz

new_quartz


When prompted, select MUS1 from the pulldown menu, then select Local Setups and giraffe.gir, Ready and OK.


Each GIRAFFE run is assigned a run number, QUARTZ will prompt you to enter. To determine your run number, look in the GIRAFFE log book located in the 1.9-m dome book rack and look for the last entry. Increase that run number by one. If you are a returning observer and wish to use the same directory, you will need to change your run number by deleting the file disk.file from your directory.

At this stage QUARTZ will spend some time initializing the CCD controller and checking the status of the GIRAFFE head. To check that things are working, you can read out the CCD by selecting the Read CCD item from the CCD drop-down menu. This will display information regarding the bias reading and the maximum CCD count.


Observing Recipe

1. Filling the cryostat

After filling the cryostat, you must wait 30 mins before beginning observations.

A technician will fill the cryostat at ~08:00 and ~16:00 (check on the log outside the Coude room that this has been done before you start observing). The observer must fill the cryostat either at ~19:00 and at the end of the night (avoiding the need to stop during observing), or at ~00:00, whether or not observations have been made.

The cryostat is filled from the dewar outside the Coude room. Check the pressure of the dewar - it should be ~10 bar, and must not exceed 15 bar. Open the right-hand blue tap to start filling, and watch the cryostat. Close the tap when liquid nitrogen starts to drip out of the cryostat.

The CCD "tank" temperature should be ~180K, and the "sink" temperature ~79K. The temperatures are displayed toward the bottom of the QUARTZ window.

Even in bad weather, the cryostat must be filled during the night. The last filling for the night should not be done before midnight.


2. Instrument setup

The instrument is controlled by the QUARTZ software on giraffe PC.

2.1 Starting the software

1) Log on as ccd (usual password)

2) cd to working directory

3) Enter command: new_quartz

4) In the pop-up CCD menu, select MUS1

5) In the second pop-up window, select Local setup files → select giraffe.girReadyOk


Each GIRAFFE run is assigned a run number, that QUARTZ will now prompt you to enter. To determine your run number, look in the GIRAFFE log book located in the 1.9-m dome book rack and look for the last entry. Increase that run number by one. If you are a returning observer and wish to use the same directory, you will need to change your run number by deleting the file disk.file from your directory.


QUARTZ will now initialise the CCD controller and check the status of the GIRAFFE head. Do the following:

  • Wait 2 minutes for it to finish initalising.
  • Check that things are working, by reading out the CCD by selecting Read CCD from the CCD drop-down menu at the top right of the QUARTZ window. This will display information regarding the bias reading and the maximum CCD count.


2.2 Initialising the prisms & filters

Do this at the start of the run, using options available by clicking on the “Init” button at the top right of the QUARTZ window:

1) Select “Init” → “Find reference” and wait for “Finding reference...” window to close

2) Select “Init” → “Define red” or “Define blue” depending on the prism you wish to use and enter prism position

3) Select “Init” → “Red/blue position go” and wait for “prism movement” and “detector motion” messages to clear

4) Check and note down the prism position in the “Prism” status box at the bottom of the QUARTZ window.

5) Select “Filter” → “Init” at start of run, and again before every filter change

6) By taking an arc (follow steps 1-2 in Section 4.1), check the resulting orders are correct (see section on reductions software) and spectrograph focus is good (see Section 5).


3. Calibrations

3.1 Camera Flats

Taking camera flats involves interacting with the components on the bench in the Coude room. Please be extremely careful not to touch anything except the flatfield screen and the lamp.

At the start of the run, or after a software crash, obtain camera flats as follows:

1) Enter the Coudé room, duck under the liquid nitrogen pipe and lift the large black cover over the side of the bench

2) Holding the handle of the white screen, slide it in front of the camera.

3) Go to the opposite side of the bench, switch on the small lamp from the shelf below and turn the intensity to very low. Carefully place the lamp directly in front of the screen, so as to illuminate it as uniformly as possible.

4) In the QUARTZ “Control” panel, select “ND Pos 1” and “Mir Pos 3”.

5) In the bottom left window of the QUARTZ software, type *CAMERA

6) Click the “Expose” button in the “Control” panel on the right of the QUARTZ window and enter the exposure time (likely a couple of seconds for red prism). Counts should be as high as possible (<50000) without saturating.

7) After readout, check the information box on the bottom left – if saturated pixels are reported, reduce the exposure time. Flats with saturated pixels cannot be used. If satisfied, save to disk.

8) Check image is transferred to the thin client ltsp.suth:/data/74in/giraffe/data/image/yyyymmdd, and check header info to ensure it is your file (not an old file with the same name). If data is not found on ltsp, check /data/image on the giraffe PC, and call IT (**113) to set up image transfer to ltsp.

9) Expose and save 10 camera flats.

10) Carefully remove the lamp and screen.


3.2 Fibre Flats

At the start of an observation, take ~7 fibre flats as follows:

1) Rotate the silver knob on the GIRAFFE head on the telescope to the IN position, to insert a colour filter into the beam.

2) Select “ND Pos 1”, “Mir Pos 3” and “Lamp” in the QUARTZ “Control” panel.

3) Click the “Expose” button in the “Control” panel on the right of the QUARTZ window and enter the exposure time. Counts should be as high as possible (<50000) without saturating. Depending on prism setting, it may be necessary to use a different ND filter.

9) After readout, check the counts in the image and the information box on the bottom left – if saturated pixels are reported, reduce the exposure time.

10) If satisfied, save to disk. Expose and save 3 fibre flats.

11) On QUARTZ, click to switch OFF “Lamp”. At the telescope, rotate the silver knob on the GIRAFFE head to the OUT position.